检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学机器人研究所,黑龙江哈尔滨150001
出 处:《光学精密工程》2006年第3期406-411,共6页Optics and Precision Engineering
基 金:国家863计划项目(No.2002AA404550)
摘 要:研究开发了一种采用柔性铰链导向的二维光学调整微定位工作台,建立了工作台的简化模型,并利用结构力学理论推导出工作台沿x、y方向刚度及前二阶固有频率解析式。进行了微定位工作台固有频率及沿x、y方向刚度的试验测试,并结合解析方法和有限元方法对微定位工作台设计刚度及动力特性进行分析验证。有限元分析表明:当工作台的直角平板柔性铰链长度较小而铰链宽度较大时,其刚度、频率及驱动力较高,铰链根部应力集中也较严重。通过改变柔性铰链的特征参数,可达到控制和优化工作台固有频率、输出位移、应力分布及驱动力响应的目的,并提出了一种优选微定位工作台柔性铰链参数的简易方法。A two-degree-of-freedom (2-DOF) flexure hinge guided-motion nanopositioning stage was developed to align optical system, and the simplified modeling of the nanopositioning stage was discussed. The x and y direction stiffness and two natural frequencies of the nanopositioning stage were deduced in terms of the theory of structural mechanics. Theoretical analysis and Finite Element Analysis(FEA) on static and dynamic behaviors of the nanopositioning stage were performed, the comparative results of the theory, FEA and experiments show the accuracy of theory model and the validity of FEA. FEA also indicates that the stiffness, natural frequency and driving force will increase with decreasing hinge length and increasing hinge width in despite of increasing the maximum stress of the stage. The experimental results also show that dimension modification is available to controlling and optimizing natural frequency, displacement, stresses, and force to achieve the desired response of the nanopositioning system. Finally, a simple procedure to optimize dimensions of the nanopositioning stage was given.
分 类 号:TH703.6[机械工程—仪器科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43