检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学电子工程与信息科学系,合肥230027
出 处:《数据采集与处理》2006年第2期128-132,共5页Journal of Data Acquisition and Processing
基 金:安徽省人才开发基金(2004Z025)资助项目
摘 要:盲信号分离中当源信号个数大于观测信号个数,且源信号不是足够稀疏时,如果利用聚类算法进行分离,分离效果将会变差。为此提出一种在此欠定条件下新的盲信号分离算法。利用源信号的“稀疏性”估计混合矩阵,然后简化混合矩阵构造新的混合模型。由于源信号间具有的独立性,使得可以在新的混合模型中从观察信号的自相关函数中估计出源信号的频谱,从而达到分离出源信号的目的,且分离效果优于聚类算法。最后给出仿真试验实例,试验结果验证了算法的有效性。A new algorithm for the independent component analysis under the condition of more sources than sensors is presented. Under the condition,the clustering algorithm cannot obtain a better result if source signals are not sparse enough. The new algorithm can simplify the channel matrix and set up a new one by using the sparse characteristic of source signals. Based on the independence among source signals, the frequency spectrum of the source signals can be estimated from auto-correlation function of the observed signals in a new channel model,and then draw source signals. The algorithm can get better result than the clustering algorithm. Simulation experiments are available to support the proposed algorithm.
分 类 号:TN911[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112