Photodegradation of bisphenol A in Fe(Ⅲ)-oxalate complexes solution  

Photodegradation of bisphenol A in Fe(Ⅲ)-oxalate complexes solution

在线阅读下载全文

作  者:ZHAN Man-jun YANG Xi XIAN Qi-ming KONG Ling-ren 

机构地区:[1]State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China [2]Jiaying University, Meizhou 514015, China

出  处:《Journal of Environmental Sciences》2006年第4期771-776,共6页环境科学学报(英文版)

基  金:TheNationalNaturalScienceFoundationofChina(No.20207004;50578074)andtheNationalKeyTechnologyandDevelopmentProgramofChina(No.2003BA808A17)

摘  要:The aqueous photodegradation of bisphenol A (BPA) in the presence of Fe(Ⅲ)-oxalate complexes (Fe(Ⅲ)-Ox), which are common compositions of natural water, was investigated in this study. BPA underwent rapid indirect photolysis in Fe(Ⅲ)-Ox solution under simulated solar irradiation, proceeding pseudo-first-order kinetics. The photolysis rate increased with decreasing pH or initial BPA level and increasing Fe(Ⅲ)/oxalate concentration ratio. Hydroxyl radicals (·OH), which were generated from the photochemical processes of Fe(Ⅲ)-Ox complexes and contributed to the photooxidation of BPA, were determined by molecular probe and electron spin resonance (ESR) methods with the steady-state concentration of 2.56 × 10^-14 mol/L. Superoxide anion radical (O2^·-) was considered as the precursor of. OH and qualitatively determined by adding nitro blue tetrazolium as well as ESR experiments. Based on the structural analysis of the intermediate photoproducts of BPA in Fe(Ⅲ)-Ox complexes solution, the possible degradation pathways of BPA were proposed, involving ·OH addition, alkyl scission and alky oxidation. The results indicate that the photochemical reactivity of Fe(Ⅲ) may affect the environmental fate of BPA in natural water significantly.The aqueous photodegradation of bisphenol A (BPA) in the presence of Fe(Ⅲ)-oxalate complexes (Fe(Ⅲ)-Ox), which are common compositions of natural water, was investigated in this study. BPA underwent rapid indirect photolysis in Fe(Ⅲ)-Ox solution under simulated solar irradiation, proceeding pseudo-first-order kinetics. The photolysis rate increased with decreasing pH or initial BPA level and increasing Fe(Ⅲ)/oxalate concentration ratio. Hydroxyl radicals (·OH), which were generated from the photochemical processes of Fe(Ⅲ)-Ox complexes and contributed to the photooxidation of BPA, were determined by molecular probe and electron spin resonance (ESR) methods with the steady-state concentration of 2.56 × 10^-14 mol/L. Superoxide anion radical (O2^·-) was considered as the precursor of. OH and qualitatively determined by adding nitro blue tetrazolium as well as ESR experiments. Based on the structural analysis of the intermediate photoproducts of BPA in Fe(Ⅲ)-Ox complexes solution, the possible degradation pathways of BPA were proposed, involving ·OH addition, alkyl scission and alky oxidation. The results indicate that the photochemical reactivity of Fe(Ⅲ) may affect the environmental fate of BPA in natural water significantly.

关 键 词:bisphenol A Fe(Ⅲ)-oxalate complexes PHOTOOXIDATION reactive oxygen species 

分 类 号:X131[环境科学与工程—环境科学] O643.3[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象