检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]合肥工业大学计算机与信息学院,安徽合肥230009
出 处:《合肥工业大学学报(自然科学版)》2006年第7期830-833,共4页Journal of Hefei University of Technology:Natural Science
基 金:安徽省自然科学基金资助项目(03042305)
摘 要:支持向量机仅仅由支持向量所决定,而支持向量来自于边界的样本,如果样本集中存在较多的噪音或孤立点,特别是两类样本过分交叉,都会降低支持向量机的推广能力。为了改善支持向量机的推广性能,文章提出一个支持向量机的边界样本修剪方法:首先对边界样本进行抽取,然后用RemoveOnly算法对边界样本进行修剪,修剪后的边界样本就是最终的支持向量机训练样本。实验结果表明,修剪方法可以让支持向量机的推广能力有不同程度的提高。As a support vector machine(SVM) is determined only by support vectors(SVs), which are a part of edge samples, its generalization ability may be decreased if the noise is too much or outlier samples are too many, especially the samples from different classes are intermixed excessively. In order to improve generalization performance of the SV, M, a method of pruning edge samples is presented. Firstly, some edge samples near to the optimal hyperplane are extracted, including SVs likely. Secondly, these samples are pruned with the RemoveOnly algorithm. Lastly, these pruned edge samples are trained. Experiments show that pruning can partly improve generalization performance of the SVM.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.23