检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪晓东[1] 张长江[1] 张浩然[1] 冯根良[1] 许秀玲[1]
机构地区:[1]浙江师范大学信息科学与工程学院,金华321004
出 处:《仪器仪表学报》2006年第7期730-733,共4页Chinese Journal of Scientific Instrument
基 金:浙江省自然科学基金(602145)资助项目
摘 要:提出了应用最小二乘支持向量机(LS-SVMs)建立传感器动态模型的方法。LS-SVMs的训练过程遵循的是结构风险最小化原则,而不是通常神经网络的经验误差最小化原则,遵循该原则可获得更好的泛化性能,且不易发生局部最优及过拟合现象,因此可以克服应用人工神经网络建立传感器动态模型的缺陷。通过实例验证了该方法的实用性及可靠性。实验结果表明,即使传感器动态模型存在严重非线性,该方法也仍然有效。The least squares support vector machines (LS-SVMs) are proposed for nonlinear sensor dynamic modeling. The LS-SVMs were established based on the structural risk minimization principle rather than minimized empirical error principle commonly implemented in the neural networks. The LS-SVMs can achieve higher generalization performance. Also, local minima and over fitting are unlikely to occur. Therefore, the LS-SVMs can overcome the shortcomings of neural networks in sensor dynamic modeling. The effectiveness and reliability of the method are demonstrated in two examples. The experimental results show that the method is still effective even if the sensor dynamic model is highly nonlinear.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38