改进型柔性神经网络及在开关磁阻电机磁化曲线建模中的应用  被引量:2

An Improved Flexible Neural Network and Application to Magnetization Curves Modeling of Switched Reluctance Motor

在线阅读下载全文

作  者:伍峰[1] 葛宝明[1] 

机构地区:[1]北京交通大学电气工程学院,北京100044

出  处:《机车电传动》2006年第4期27-30,共4页Electric Drive for Locomotives

基  金:教育部重点项目;北京交通大学"十五"专项科技基金(2003SM013)

摘  要:针对传统神经网络建模的不足提出了一种改进型的柔性神经网络。阐述该网络在学习、训练过程中不仅可以调节连接权,而且加强了对网络非线性函数参数的实时修改,通过多自由度的训练与调整,使所建网络达到最佳的性能。给出了所建网络的结构与学习算法,并通过算例的形式将其与传统BP神经网络及传统已有柔性神经网络进行了全方位比较。结果表明,改进型网络由于其三自由度调节参数的能力,具有比传统BP网络及已有柔性神经网络更强的学习能力,它以最少的迭代循环次数实现了期望精度。An improved flexible neural network is proposed in the tight of the disadvantages of traditional neural networks. The proposed neural network could not only adjust the connection right during the process of study and train, but improve the renl-time modification of network non-linear function parameters. The built network could be optimized through training and adjustment with muldfreedom. The structure and algorithm of the built network is given and is compared with the traditional BP neural network as well as the existing traditional flexible neural network through examples, The results show that the improved network features stronger capability in learning, due to its capability in triple-freedom adjustment parameter. The expected accuracy is realized with least times of iterativeness cycling.

关 键 词:柔性神经网络 多自由度 网络结构 开关磁阻电机 建模 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象