检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:乔西现[1] 蒋晓辉[2] 黄强[3] 何宏谋[2] 陈丽[2]
机构地区:[1]黄河水利委员会黑河流域管理局,甘肃兰州730030 [2]黄河水利科学研究院,河南郑州450003 [3]西安理工大学水利水电学院,陕西西安710048
出 处:《应用科学学报》2006年第4期424-428,共5页Journal of Applied Sciences
基 金:国家"973"重点基础研究发展计划资助项目(G1999043601)
摘 要:根据年径流时间序列资料所隐含的时序分段相依性,用门限自回归模型(TAR)来预测年径流,并研制了TAR建模的一整套简便通用的方案.文中所提出的模拟退火遗传算法,可同时优化门限值和自回归系数,从而解决了TAR建模过程所涉及的大量复杂寻优工作这一难题,为TAR模型的广泛应用提供了强有力的工具.实例计算的结果说明这套方案是可行和有效的.To effectively utilize information of the section interdependence in the time series of annual runoff, a threshold auto-regressive (TAR) model is proposed to predict annual runoff. A simple and general scheme is presented to establish a TAR model. With an improved genetic algorithm, both the threshold values and auto-regressive coefficients can be optimized, and the problem of TAR modeling resolved, giving a powerful tool for wide application of the TAR model. A case study shows that the scheme is practical and efficient, and the TAR model can successfully reduce model errors and, by controlling the threshold values, ensure good stability and accuracy of the model forecast. As a general method, the scheme has theoretical value and wide range of applications in nonlinear time series prediction.
关 键 词:年径流时间序列 预测 门限自回归模型 遗传模拟退火
分 类 号:P338[天文地球—水文科学] P333.9[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222