Biotransformation of indomethacin by the fungus Cunninghamella blakesleeana  

Biotransformation of indomethacin by the fungus Cunninghamella blakesleeana

在线阅读下载全文

作  者:Peng ZHANG Li-hong LIN Hai-hua HUANG Hai-yan XU Da-fang ZHONG 

机构地区:[1]Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University, Shenyang 110016, China [2]Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China [3]Department of Microbiology, Shenyang Pharmaceutical University, Shenyang 110016, China

出  处:《Acta Pharmacologica Sinica》2006年第8期1097-1102,共6页中国药理学报(英文版)

基  金:Project supported by the National High Technology Research and Development Program of China(№ 2003AA2Z347C).

摘  要:Aim: To investigate the biotransformation of indomethacin, the first of the newer nonsteroidal anti-inflammatory drugs, by filamentous fungus and to compare the similarities between microbial transformation and mammalian metabolism of indomethacin. Methods: Five strains of Cunninghamella (C elegans AS 3.156, C elegans AS 3.2028, C blakesleeana AS 3.153, C blakesleeana AS 3.910 and C echinulata AS 3.2004) were screened for their ability to catalyze the biotransformation of indomethacin. Indomethacin was partially metabolized by five strains of Cunninghamella, and C blakesleeana AS 3.910 was selected for further investigation. Three metabolites produced by C blakesleeana AS 3.910 were isolated using semi-preparative HPLC, and their structures were identified by a combination analysis of LC/MSn and NMR spectra. These three metabolites were separated and quantitatively assayed by liquid chromatography-ion trap mass spectrometry. Results: After 120 h of incubation with C blakesleeana AS 3.910, approximately 87.4% of indomethacin was metabolized to three metabolites: Odesmethylindomethacin (DMI, M 1, 67.2%), N-deschlorobenzoylindomethacin (DBI, M2, 13.3%) and O-desmethyl-N-deschlorobenzoylindomethacin (DMBI, M3, 6.9%). Three phase Ⅰ metabolites of indomethacin produced by C blakesleeana AS 3.910 were identical to those obtained in humans. Conclusion: C blakesleeana could be a useful tool for generating the mammalian phase Ⅰ metabolites of indomethacin.Aim: To investigate the biotransformation of indomethacin, the first of the newer nonsteroidal anti-inflammatory drugs, by filamentous fungus and to compare the similarities between microbial transformation and mammalian metabolism of indomethacin. Methods: Five strains of Cunninghamella (C elegans AS 3.156, C elegans AS 3.2028, C blakesleeana AS 3.153, C blakesleeana AS 3.910 and C echinulata AS 3.2004) were screened for their ability to catalyze the biotransformation of indomethacin. Indomethacin was partially metabolized by five strains of Cunninghamella, and C blakesleeana AS 3.910 was selected for further investigation. Three metabolites produced by C blakesleeana AS 3.910 were isolated using semi-preparative HPLC, and their structures were identified by a combination analysis of LC/MSn and NMR spectra. These three metabolites were separated and quantitatively assayed by liquid chromatography-ion trap mass spectrometry. Results: After 120 h of incubation with C blakesleeana AS 3.910, approximately 87.4% of indomethacin was metabolized to three metabolites: Odesmethylindomethacin (DMI, M 1, 67.2%), N-deschlorobenzoylindomethacin (DBI, M2, 13.3%) and O-desmethyl-N-deschlorobenzoylindomethacin (DMBI, M3, 6.9%). Three phase Ⅰ metabolites of indomethacin produced by C blakesleeana AS 3.910 were identical to those obtained in humans. Conclusion: C blakesleeana could be a useful tool for generating the mammalian phase Ⅰ metabolites of indomethacin.

关 键 词:INDOMETHACIN microbial transformation Cunninghamella blakesleeana liquid chromatography mass spectrometry 

分 类 号:R97[医药卫生—药品]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象