检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《物理学报》2006年第8期3945-3949,共5页Acta Physica Sinica
摘 要:将混沌同步问题用精确的数学语言给予描述,通过数学分析将其转化为微分方程组的稳定性问题.以Lorenz系统族的Chen氏系统作为典型系统,在线性耦合下分析系统参数,得到了系统达到同步时的充分条件,且在理论上加以证明.结合该条件,提出了一种确定耦合系数的方法.最后用仿真实验验证了该方法的正确性,并验证了在不同耦合方式和参考系统的情况下定理的有效性.We describe the problem of chaos synchronization with rigorous mathematical theory, and convert it to the analysis of stability of the differential equations. Chen's system, which belongs to the Lorenz's group, has been introduced as a typical system for discussing the stability of the linear coupled chaotic systems. A theorem on the sufficient conditions for attaining the chaotic synchronization has been proposed and a detailed proot is given. Using the conditions discussed above, a method of identifying the coupled parameter is also developed. Eventually, the results of simulation prove the validity of the theorem, and demonstrate the synchronization phenomenon of coupled systems in different ways and for different systems.
分 类 号:O231[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117