入侵检测中的归纳学习方法  被引量:2

Inductive Learning in Intrusion Detection

在线阅读下载全文

作  者:刘培顺[1] 王学芳[2] 

机构地区:[1]中国海洋大学计算机科学系,青岛266071 [2]中国海洋大学数学系,青岛266071

出  处:《计算机工程》2006年第16期125-126,162,共3页Computer Engineering

摘  要:结合使用着色Petri网和EDL语言描述攻击模型,该文给出了使用归纳学习对攻击模型进行泛化和特化操作,泛化后的模型可以检测出与已知攻击实例类似的未知攻击行为,实现了攻击知识库进行自动更新和扩展的方法。攻击实例首先使用EDL语言表述为一个攻击实例模型,对实例模型进行泛化得到攻击实例的3层概念空间,进而转化为着色Petri网模型,利用着色Petri网的运行机制对攻击行为进行检测。实验结果表明该方法对于具有相似攻击行为的未知攻击的检测非常有效。This paper proposes the method for generalization and specialization of attack pattern using inductive learning, which can be used updating and expanding knowledge database. The attack pattern is established from an example by using the colored Petri net and EDL, after generalization it can be used to detect unknown attacks whose behavior are similar to the example. In practice the attack pattern first described by EDL from an example, then the pattern is generalized thus the concept spaces of attack are given and they can be transformed to Colored Petri net, when detection searches the intrusion from the top down by virtue of the concept space of the attack pattern. In fact the concept space of pattern indicates a depth-first search way.

关 键 词:入侵检测 归纳学习 着色PETRI网 泛化 特化 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象