检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]燕山大学电气工程学院,河北秦皇岛066004
出 处:《传感技术学报》2006年第4期1223-1225,共3页Chinese Journal of Sensors and Actuators
基 金:国家自然科学基金资助(60272027)
摘 要:对于结构非常相似的农药,它们的荧光光谱也非常相似并且在很宽波长范围内相互重叠。传统的荧光光谱分析法很难对其进行分类识别。一种基于小波分析而构造的新型神经网络———小波神经网络是利用它并适当选取网络结构和小波基,实现了对卡死克、盖虫散和吡虫啉三种农药荧光光谱的分类识别。实验表明,小波神经网络对光谱间的细微结构差别具有良好的识别能力。通过比较发现,在分类识别方面小波神经网络比BP网络具有更高的分辨率及较少的训练次数。For the pesticides with similar structures, their fluorescence spectra are also similar and overlapped in a wide wavelength arrange. The conventional fluorescence spectrum analysis method can hardly identify them. A new type of neural network wavelet neural network is introduced, which is constructed based on wavelet analysis. The classification of flufenoxuron, hexaflumuron and imidacloprid are realized with adaptive network structure and wavelet basis. The experiment results show that wavelet neural network has the better ability to the fine structure difference between the spectra. Compared with BP networks, wavelet neural network has higher resolution and less training times.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3