蛋白质二级结构预测的人工神经网络方法研究  被引量:7

Study of Neural Network Methods in Predicting Protein Secondary Structures

在线阅读下载全文

作  者:何琴[1] 高建华[1] 刘伟[2] 

机构地区:[1]郑州大学化学系 [2]郑州大学生物工程系,郑州450052

出  处:《分析科学学报》2006年第4期438-440,共3页Journal of Analytical Science

基  金:河南省教育厅自然科学基金(No:9815007)

摘  要:本文比较了五种神经网络方法预测蛋白质二级结构的准确率,并做出初步评价。五种神经网络分别是:误差反传前向网络(BP),径向基函数网络(RBF),广义回归神经网络(GRNN),串并联叠层网络(CF),Elman网络(ELM)。结果显示:GRNN的预测准确率达85.7%,优于其它网络。本文还讨论了训练集样本数及参数的优化对GRNN预测准确率的影响。In this paper, five neural network models, such as back-propagation neural network(BPNN), radial basis neural network(RBFNN), generalized regression neural network(GRNN), cascade forward back been than also propagation neural network(CFNN) and Elman backpropagation neural network(ELMNN), have evaluated in predicting protein secondary structures. The prediction accuracy of GRNN is better the others. In addition, some affecting factors(the training sets and the parameters of network) are discussed.

关 键 词:蛋白质 二级结构 神经网络 

分 类 号:Q518.1[生物学—生物化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象