检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学电机工程与应用电子技术系电力系统及大型发电设备安全控制和仿真国家重点实验室,北京100084
出 处:《清华大学学报(自然科学版)》2006年第7期1216-1218,1222,共4页Journal of Tsinghua University(Science and Technology)
基 金:国家自然科学基金资助项目(50305017)
摘 要:为了正确评估油气管道的使用寿命和安全状况,需根据漏磁检测信号特征对缺陷进行准确的定量分析。提出一种基于径向基函数(RBF)神经网络、用于定量分析油气管道缺陷的迭代方法,给出了具体的算法步骤,并采用自适应学习机制来训练网络,既加快了该算法的收敛速度,又避免了陷入局部最小值问题。仿真结果表明:该方法不仅训练速度明显快于普通反向传播(BP)网络,而且最大量化误差仅为0.26%。该方法有助于提高漏磁检测的准确度,可为油气管道的安全评估提供可靠的依据。In order to properly evaluate the service lifetime and security status of oil and gas pipelines, the defects should be quantitatively analyzed based on the features of the magnetic flux leakage (MFL) signals. An iterative quantitative analysis method based on radial-basis function (RBF) neutral network was put forward in this paper, and the detailed procedures of the iterative algorithm were introduced. And, by using self-adaptive mechanism to train the network, the convergence time was shortened and the local minimum in the error surface was effectively avoided. The results of simulation show this method has much faster training speed than standard backward propagation (BP) network, and the maximal error of quantification is only 0. 26%. This method can be used to increase the quantification accuracy of MFL detection, and provide reliable basis for the security evaluation of oil and gas pipelines.
分 类 号:TE973.6[石油与天然气工程—石油机械设备]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.113.183