检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京大学概率统计系
出 处:《应用数学学报》1996年第4期597-608,共12页Acta Mathematicae Applicatae Sinica
基 金:国家自然科学基金;博士点基金
摘 要:设F(t)是表示寿命的分布函数,G(t)是表示删失的分布函数,F(t)是F(t)=1—F(t)的Kaplan-Meier估计.本文在F(t),G(t)均连续的条件下,证明了对任何取定的0<t<TH,有其中TH=inf{t:H(t)=0},H(t)=(1-F(t))(1-G(t)),渐近方差的刀切估计.Let F(t) be the distribution function for life time random variate, G(t) bethe distribution function for censorship random variate,and F.(t) be the Kaplan-MeterEstimator of F(t) =1 - F(t).In this paper,under the condition that both F(t) and G(t)are continuous,it is shown thatfor any fixed 0<t< TH, where TH is the Jack-knife estimator of asympototic variance of
关 键 词:刀切方差估计 正态逼近速度 K-M估计 分布函数
分 类 号:O212.1[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112