检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]内蒙古农业大学水利与土木工程学院
出 处:《农业工程学报》2006年第8期44-49,共6页Transactions of the Chinese Society of Agricultural Engineering
基 金:国家自然科学基金(50269002)
摘 要:在盐渍化地区进行节水灌溉研究,具有一定的难度,其影响因素较多,而盐渍化地区根系吸水量的计算是进行节水灌溉的关键。该文根据带有作物根系吸水项的垂向一维土壤水运动方程,采用有限差分法,应用节水灌溉试验野外实测资料计算了作物根系吸水速率,并检验了所计算根系吸水速率的准确性。在此基础上将人工神经网络技术引入到根系吸水模型的建立中,建立了拓扑结构为15:12:5的根系吸水模型。研究表明:油料向日葵根系的主要吸水层集中在距地表0~50cm土层间,最大吸水峰在20~40cm之间运移;计算的根系吸水速率精度较高;所建立的BP神经网络根系吸水模型对盐渍化地区油料向日葵根系吸水速率的模拟具有较高的精度。It is difficult to study water saving irrigation in saline soil due to more influencing factors. However, the root-water-uptake rate is important for water saving irrigation in saline soil. Therefore, the root-wateruptake rate in saline soil was studied. According to one dimensional vertical water flow equation with a volumetric sink term (represent the water uptake by plant roots), the finite difference method was used to calcuiate the rootwater-uptake rate with field data under water saving irrigation. The accuracy of the root-water-uptake rate was tested. The Artificial Neural Network was introduced to develop the soil-root water extraction model, and the topology structure was 15 : 12 : 5. Results show that the main water uptake by the sunflower roots located the 0~50 cm layer, and the peak rate of water uptake moves between 20 and 40 cm soil layer. The calculating precision of the root-water-uptake is higher. The BP neural network model for the root-water-uptake rate by sunflower in saline soil has a reasonable precision.
关 键 词:根系吸水模型 数值模拟 人工神经网络 Microlysimeter
分 类 号:S274.1[农业科学—农业水土工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.39