检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《水电能源科学》2006年第4期4-7,共4页Water Resources and Power
基 金:国家自然科学基金资助项目(50579009);广西水利水电科技计划项目(桂水科合字(2005)2号)
摘 要:为了探索提高径流中长期预测精度的有效途径,尝试建立了基于支持向量机的径流预测模型,并应用于西江流域梧州站的年、月径流预测中,取得了很好的效果。并与神经网络预测进行对比,结果表明该模型的预测精度要高于人工神经网络模型。To increase the efficiency of medium and long term runoff prediction, a prediction model based on support vector machine was recommended in this paper. The results show that the model has a good effect on forecasting the runoff in Xijiang basin. It is proven that the precision of SVM model is higher than that of neural network.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3