检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京交通大学电子信息工程学院589信箱,100044
出 处:《ITS通讯》2006年第2期28-30,共3页
摘 要:智能交通系统是目前世界上公认的解决城市交通拥堵问题的最佳方案,实时、准确的交通流量预测是智能交通系统实现的关键技术之一。本文采用改进型BP神经网络建立起交通流的时间序列模型,该模型可用于短期内道路交通流量的预测。Intelligent Transportation System (ITS) is recognized as one of the best ways to solve the problem of traffic jam in cities. Accurate and real-time prediction of traffic flow is the key technology in ITS. In this paper, the time-sequence model of traffic flow is based on the improved BP neural network, and this model can be used for short time prediction of traffic flow.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7