检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]襄樊学院招生就业处,湖北襄樊441053 [2]中国地质大学计算机学院
出 处:《计算机时代》2006年第9期3-5,共3页Computer Era
基 金:湖北省自然科学基金项目(2003ABA043);湖北省人文与社科开放基金项目(2004B0011)
摘 要:分类问题是数据挖掘中的一个重要问题。尽管神经网络是一种高精度的分类器,但是由于神经网络模型众多,在分类预测时如何选择合适的模型,还没有一个普遍的原则。文章对后传播神经网络(BPN)和概率神经网络(PNN)在数据挖掘分类中的应用进行了对比研究,并利用这两种模型对高校研究生信息进行了分类挖掘。仿真结果证明,PNN模型在分类预测上优于BPN模型,而且其分类速度快、正确率高、测试结果稳定。
关 键 词:神经网络 数据挖掘 分类 后传播神经网络 概率神经网络
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117