基于信息融合技术的电机故障诊断  被引量:10

Motor fault diagnosis based on information fusion technology

在线阅读下载全文

作  者:付华[1] 冯爱伟[1] 单亚峰 徐耀松[1] 王传英[1] 

机构地区:[1]辽宁工程技术大学电气工程系,辽宁阜新123000

出  处:《辽宁工程技术大学学报(自然科学版)》2006年第4期549-552,共4页Journal of Liaoning Technical University (Natural Science)

基  金:辽宁省自然科学基金资助项目(2051206);辽宁省优秀人才基金资助项目(2005219005)

摘  要:为了能够从多方面反映电机系统状态,实现对电机故障模式的自动识别与准确诊断,将数据融合技术与神经网络相结合,建立电机故障诊断系统。在数据融合级上,将故障特征量进行分类处理,然后采用多层神经网络进行故障特征级融合与电机故障的局部诊断,获得彼此独立的证据,再运用D-S(DempserShafer)证据理论融合算法对各证据进行融合,最终实现对电机故障的准确诊断。诊断测试试验证明,该诊断系统提高了电机故障诊断的精度,并能满足诊断的实时性要求。The mine motor fusion diagnosis system was set up for reflecting the mine motor system state in multi-aspect, realizing automatically the identification of motor fault modes, and diagnosing accurately the faults by using neural network and evidence theory. After fault characteristic data was classified and processed on the data fusion level, a multi-level neural network was used to carry on the fusion on the characteristic level and the local fault diagnosis of mine motors, so that independent evidences could be acquired. Then D-S evidence theory fusion algorithm was used to fuse all of the evidences to finally fulfill an accurate fault diagnosis for mine motors. The diagnosis tests prove that the system can improve the diagnostic precision and satisfy the requirement for real-time diagnosis.

关 键 词:信息融合 证据理论 神经网络 电机 故障诊断 

分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置] TM307[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象