检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《安阳工学院学报》2006年第3期23-26,共4页Journal of Anyang Institute of Technology
基 金:河南省自然科学基金资助项目(0411013800;0411014500);河南省高校杰出科研人才创新工程项目(2004KYCX014)
摘 要:粗糙集理论被广泛应用于人工智能、模式识别、数据挖掘和知识发现等领域。而对象的属性约简是是粗糙集理论中的重要问题之一。由于属性约简计算量较大,影响了的粗糙集的实际应用。本文用RBF神经网络高效和OLS对称性的特点,研究粗糙集属性的约简,解决了属性约简的难题,完成了算法的实现,取得了较好的效果。Rough sets theory was used widely to artificial intelligence, pattern recognition, data mining and knowledge discovery etc fields. Reduction of object attributes is one of important problems of rough sets theory. Actual use of rough sets was affected by more calculations on attribute reduction. In this paper, reduction of rough sets attributes was researched with high efficiency of RBF neural networks and symmetry property of OLS. The difficult problem of attributes reduction was solved by it. Implementation of algorithm was accomplished by it. A better result was gained from it.
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28