一种改进的多输入队列的神经网络调度算法  

An lmproved Neural Network Cell Scheduling Algorithm for Multiple Input-Queues

在线阅读下载全文

作  者:申金媛[1] 李现国[1] 范怀玉[1] 熊涛[2] 常胜江[2] 张延炘[2] 

机构地区:[1]郑州大学信息工程学院,河南郑州450052 [2]南开大学现代光学研究所光电信息技术科学教育部重点实验室,天津300071

出  处:《光电子.激光》2006年第9期1119-1122,共4页Journal of Optoelectronics·Laser

基  金:国家自然科学基金资助项目(60277022;60477009);河南省杰出青年基金资助项目(512000400);河南省创新人才培养对象资助项目;教育部留学回国人员科研启动基金资助项目

摘  要:提出一种改进的ATM交换机多输入队列的神经网网络调度算法(IMIQM),其调度策略采用每条入线在同一时隙内可传送多于1个信元的策略,并提出一种用于Hopfield神经网络(HNN)控制信元调度的新的能量函数。利用计算机进行仿真模拟,在业务流模型和负荷相同的情况下,当交换机规模N为150、多输入队列(开窗数)为5时,IMIQM的最大吞吐率可以达到0.904,普通的多输入队列法(MIQM)为0.856,而窗口方法(WM)为0.886。结果表明,IMIQM与MIQM、WM相比提高了吞吐率,或在吞吐率相同的情况下IMIQM更容易用光电子技术实现,且由于HNN的高度并行的数据处理能力,能够实现大规模交换结构的实时调度。An improved multiple input-queuing method (IMIQM) used in asynchronous transfer mode(ATM) switch by a Hopfield neural network(HNN) scheduling algorithm is proposed. The scheduling policy of more than one cell transferred in each input line during every time slot is employed in the IMIQM,and a new energy function is presented to accomplish this policy in HNN model. The computer simulations show that the maximum throughput is up to 0. 904 of IMIQM when the switch scale N is 150 and the number of queues is 5, but it is only 0. 856 and 0. 886 for general multiple input-queuing method(MIQM) and window method(WM) respectively with the same scale and queue (window) number under the same traffic model and load. It means that the throughput of IMIQM is improved greatly compared with the MIQM and WM. The IMIQM,therefore,can be used in real-time optimization scheduling of large-scale ATM switches.

关 键 词:Hopfield神经网络(HNN) 多输入队列 吞吐率 ATM交换结构(ASF) 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象