检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]郑州大学数学系,郑州450001
出 处:《郑州大学学报(理学版)》2006年第3期1-3,共3页Journal of Zhengzhou University:Natural Science Edition
基 金:国家自然科学基金资助项目,编号10371112;国家教委留学回国人员基金资助项目
摘 要:讨论单机、平行批、批容量无界、最小化最大完工时间的在线排序问题.对该排序问题,Zhang等人(G.Zhang,X.Cai and C.K.Wong,On-line algorithms for minimizing makespan on batch processing machines,NavalResearch Logistics,48(2001),241-258.)和Deng等人(X.Deng,C.K.Poon and Y.Z.Zhang,Approximation algo-rithms in batch processing,Journal of Combinatorial Optimization,7(2003),247-257.)两组作者分别独立地给出了同一个竞争比为(5+1)/2的在线算法,并证明该在线算法是最佳可能的.在他们的算法中,在每一批中的加工时间最大的工件,不妨设其准备时间为r而加工时间为p,将被滞后到(1+α)r+αp时刻以后加工,其中α=(5-1)/2.对同一问题设计了一个修订的在线算法,其中加工时间为p的工件只需要滞后到αp时刻.该在线算法仍然是最佳可能的,并且在一定意义下,该在线算法是渐近最优的.Consider the on-line scheduling problem of jobs with release dates on a single parallel batching machine which can process infinite jobs at a time. The scheduling problem involves assigning all jobs to batches and determining the starting times of the resulted batches in such a way that the maximum completion time of the jobs (makespan) is minimized. In [G. Zhang,X. Cai and C. K. Wong,On line algorithms for minimizing makespan on batch processing machines, Naval Research Logistics,48 ( 2001 ), 241-258) ] and [ X. Deng, C. K. Poon and Y. Z. Zhang, Approximation algorithms in batch processing, Journal of Combinatorial Optimization, 7 ( 2003), 247 257 ], the two groups of authors independently gave the same on-line algorithm with competitive ratio (√5+1 )/2 and proved that the on-line algorithm is the best possible. In their algorithms,a job (which has the maximum processing time in a batch) with release date r and processing time p will be delayed until time (1 +a)r+ap if possible,where a= (√5 -1 )/2. In this note, a modified on-line algorithm is derived for the same problem in which a job with processing time p will be delayed only until time ap if possible. It is shown that the modified on-line algorithm is still best possible,and is asymptotically optimal in a weakened version.
分 类 号:O224[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28