无向双环网络G(N;±r,±s)直径求解方法  被引量:10

A new method to calculate the diameter of undirected double-loop network

在线阅读下载全文

作  者:方木云[1] 赵保华[2] 屈玉贵[2] 戴小平[1] 

机构地区:[1]安徽工业大学计算机学院,安徽马鞍山243002 [2]中国科技大学计算机系,安徽合肥230027

出  处:《华中科技大学学报(自然科学版)》2006年第9期14-17,共4页Journal of Huazhong University of Science and Technology(Natural Science Edition)

基  金:国家自然科学基金资助项目(60473142);安徽省教育厅资助项目(2005KJ076)

摘  要:提出新的无向双环网络G(N;±r,±s)的直径求解法———分步法;并得到一种新的直观图———螺旋环,研究了螺旋环的性质;给出了无向双环网络的直径d(N;±r,±s)的显式公式;给出了N,s都固定的直径算法;在N固定,且2≤r<s≤N-1时,给出了一族无向双环网络的直径算法.利用VB6.0和SQL Server2000来仿真后者;对任意N,有不少r,s使得G(N;±r,±s)紧优或几乎紧优.验证了Boesch和Wang等提出的无向双环网络G(N;±r,±s)的直径下界;给出了一个新的直径上界公式.A new method, step-search-diameter, is presented to calculate the diameter of undirected double-loop networks G(N;±r, ±s). A new intuitional diagram, spiral ring, is obtained by this method and its attributes were studied. A simple formula for expressing d(N;±r, ±s) of this network is presented. The algorithm to calculate the network with fixed N and s and the one to calculate the diameter of the networks with fixed N and r,s(r〈s) varying to N-1 from 2 are both given. The latter algorithm was simulated by VB6.0 and SQL Server2000. The results show that for any given N, many s make G(N;±r, ±s) tight optimal or nearly tight optimal. The limited bound of the diameter of the network G(N;±r,±s) presented by Boesch and Wang was certified. A new for mula for calculating the upper bound of the diameter of the networks is also given.

关 键 词:无向双环网络 分步法 螺旋环 紧优  

分 类 号:O157.9[理学—数学] TP302[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象