检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:方木云[1] 赵保华[2] 屈玉贵[2] 戴小平[1]
机构地区:[1]安徽工业大学计算机学院,安徽马鞍山243002 [2]中国科技大学计算机系,安徽合肥230027
出 处:《华中科技大学学报(自然科学版)》2006年第9期14-17,共4页Journal of Huazhong University of Science and Technology(Natural Science Edition)
基 金:国家自然科学基金资助项目(60473142);安徽省教育厅资助项目(2005KJ076)
摘 要:提出新的无向双环网络G(N;±r,±s)的直径求解法———分步法;并得到一种新的直观图———螺旋环,研究了螺旋环的性质;给出了无向双环网络的直径d(N;±r,±s)的显式公式;给出了N,s都固定的直径算法;在N固定,且2≤r<s≤N-1时,给出了一族无向双环网络的直径算法.利用VB6.0和SQL Server2000来仿真后者;对任意N,有不少r,s使得G(N;±r,±s)紧优或几乎紧优.验证了Boesch和Wang等提出的无向双环网络G(N;±r,±s)的直径下界;给出了一个新的直径上界公式.A new method, step-search-diameter, is presented to calculate the diameter of undirected double-loop networks G(N;±r, ±s). A new intuitional diagram, spiral ring, is obtained by this method and its attributes were studied. A simple formula for expressing d(N;±r, ±s) of this network is presented. The algorithm to calculate the network with fixed N and s and the one to calculate the diameter of the networks with fixed N and r,s(r〈s) varying to N-1 from 2 are both given. The latter algorithm was simulated by VB6.0 and SQL Server2000. The results show that for any given N, many s make G(N;±r, ±s) tight optimal or nearly tight optimal. The limited bound of the diameter of the network G(N;±r,±s) presented by Boesch and Wang was certified. A new for mula for calculating the upper bound of the diameter of the networks is also given.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222