检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于勇前[1] 赵相国[1] 王国仁[1] 陈衡岳[1]
机构地区:[1]东北大学信息科学与工程学院,沈阳110004
出 处:《控制与决策》2006年第9期974-978,共5页Control and Decision
基 金:国家自然科学基金项目(60273079;60573089)
摘 要:提出一种高效的基于密度单元的自扩展聚类算法SECDU.首先将数据空间等分为若干个密度单元,再根据数据点的位置将其划分到所属的密度单元中,然后针对密度单元进行聚类.聚类首先产生在数据最密集的区域,然后向周围低密度区域延伸.聚类在延伸的过程中体积逐渐增大,密度逐渐减小,直到聚类的密度达到一个事先规定的限度时为止.算法在保留原有数据分布特性的前提下利用密度单元对数据进行压缩,并在保证具有较好效果的前提下大幅度地提高了聚类的速度.An efficient self-expanded clustering algorithm based on density units (SECDU) is presented. The whole data space is divided into several density units equally. Each data point is put into a density unit according to the data point possition. The area with the highest data density is the starting point of clustering and it is expanded to the low-density area. The whole process will not stop until densities of all clusters reduce to the threshold set in advance. By compressing data into data units, SECDU can cluster large dataset at a high speed without destroying distribution feature.
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145