检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘树文[1] 王庆伟[1] 何东健[2] 李华[1] 武苏里[2]
机构地区:[1]西北农林科技大学葡萄酒学院,杨凌712100 [2]西北农林科技大学信息工程学院,杨凌712100
出 处:《农业工程学报》2006年第9期144-147,共4页Transactions of the Chinese Society of Agricultural Engineering
摘 要:针对传统专家系统自学能力差的特点,以实现基于W eb的智能葡萄病害诊断系统为目标,研究了26种葡萄常见病害模糊隶属度的表示方法及模糊BP神经网络模型,采用Java与M atlab混合编程方法实现了该系统的葡萄病害诊断功能。试验结果表明,该系统病害诊断正确率达90.9%,且能在W eb上运行,便于推广和使用。Aimed at the weak self-learning ability of traditional expert system, the expression method for fuzzy subordination and the mode of fuzzy back-propagation artificial neural network for 26 kinds of common grape diseases was studied, so as to realize a web based intelligent grape disease diagnosis system, which was implemented by JAVA and MATLAB. The system can be popularized easily as it is designed to be run online, and experimental results show that the system can diagnose grape diseases with the accuracy of 90.9%. The analyses of the diagnosis results of typical examples indicate that this system has stable reliability, can simulate the expert diagnosis process adequately, and can improve the diagnosis efficiency greatly.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117