检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程》2006年第17期132-134,共3页Computer Engineering
基 金:国家自然科学基金资助项目(60373081);广东省自然科学基金资助重点项目(04105503)
摘 要:随着各种形式的数据的迅速增长,业务数据中的时态信息挖掘问题受到人们普遍关注。该文提出了一种带有效时间区间的时态关联规则,给出了一种基于FP-树的挖掘方法。该方法利用分区挖掘的思想,以分区为单位表示项集的有效时间区间,并为每个分区构建FP-树,大大简化了对某个项集在其有效时间区间中的出现次数的计算,从而更有效地计算时态置信度。最后用一个例子对该方法的执行过程进行了阐述。With the rapid growth of data available from all kinds of sources, temporal information mining in business data has been a hot area attracting more and more attention. An approach to discover temporal association rules within valid time intervals is investigated. An algorithm based on FP-tree is devised. In this approach, by means of partition mining, each itemset is associated with a valid time interval presented by units of partitions. For each partition, a FP-tree is constructed to help the calculation of the count of an itemset within its valid time interval, which can ,smooth the calculation of temporal confidence, At last, an example is given to demonstrate the mining process.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222