对一个二步投影算法的改进以及它在变分不等式问题的应用  

Improvement of Two-Step Projection Method and Its Application to Variational Inequality

在线阅读下载全文

作  者:徐述[1] 

机构地区:[1]重庆师范大学数学与计算机科学学院,重庆400047

出  处:《云南民族大学学报(自然科学版)》2006年第4期279-280,284,共3页Journal of Yunnan Minzu University:Natural Sciences Edition

摘  要:引入一个具有误差(参阅文献[1])的二阶投影算法,在Hilvert空间中利用它来讨论了一个非线性变分不等式组的解.设H是一个实Hilbert空间,K H非空闭凸锥,任意选择初始点x0,y0∈K.计算{xk},{yk},使得xk+1=(1-ak)xk+akPk(yk-ρT(yk))+ukρ>0yk=(1-bk)xk+bkPk(xk-ηT(xk))+vkη>0>0其中T:K→H:PK是H在K上的投影.0<ak,bk<1,结论推广了文献[2]的相应结果.First we introduce a two-step projection methods with errors. Then we discuss the solution of a system of variational inequalities in Hilbert space by using the two-step projection methods . Let H be a Hilbert space and K be a nonempty closed convex cone of H. For arbitrarily chosen initial points x0, Y0 ∈ K, we compute sequences of {x^k} and {y^k}I that make. x^k+1=(1-a^k)x^k+a^kPk(y^k-pT(y^k))+u^k p〉0 y^k=(1-b^k)x^k+b^kPk(x^k-ηT(x^k))+v^k η〉0〉0 where T:K→H is a nonlinear mapping on K. Pk is the projection of H onto K, and 0 〈 a^k ,b^k 〈 1. The main theorem generalizes the result in the reference[ 2 ].

关 键 词:投影算法 非线性变分不等式 二步投影算法的收敛性 

分 类 号:O151.25[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象