检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾剑[1] 熊绍隆[1] 潘存鸿[1] 林炳尧[1]
出 处:《长江科学院院报》2006年第5期14-16,20,共4页Journal of Changjiang River Scientific Research Institute
摘 要:在定性分析涌潮主要影响因素的基础上,借助BP神经网络建立了盐官站潮头高度的预测模型,经检验该模型具有较好的泛化能力。结合正交试验设计理论,定量地分析了各因素对涌潮的影响程度。研究结果表明:潮头高度与下游潮汐呈正相关关系,而与河道地形呈负相关关系,当径流流量小于7 000 m3/s时,潮头高度与上游径流也呈正相关关系,超过此范围,则呈负相关关系。Based on qualitatively analyzing influence factors, the model for predicting the height of tidal bore at Yanguan is established by using BP neural network. The comparison of the simulated results with the observed data shows that the model has good generalization ability. In combination with the theory of orthogonal experiment design, the major affecting factors such as tide, runoff and river topography are quantitatively analyzed. It is found that the height of tidal bore is positively related to the tide, and negatively related to the river topography. The height of tidal bore is positively related to the runoff when the discharge is less than 7 000 m^3/s. However they are negative correlation relationship if the discharge is greater than 7 000 m^3/s.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.183