关于相对可数紧度空间  

On Relative Countable Tightness Spaces

在线阅读下载全文

作  者:王汉锋[1] 徐光丽[2] 

机构地区:[1]山东农业大学信息与计算科学系,山东泰安271018 [2]泰山学院数学与系统科学系,山东泰安271021

出  处:《青岛大学学报(自然科学版)》2006年第3期18-19,23,共3页Journal of Qingdao University(Natural Science Edition)

摘  要:为了得到相对可数紧度空间的映射及嵌入性质,借助映射方法和紧化理论讨论了相对可数紧度空间被闭映射逆保持问题及嵌入紧空间问题,得到了相对可数紧度空间被闭映射逆保持的一个充分条件、局部紧的可数紧度空间可嵌入紧空间的几个充分条件以及某一类局部紧空间在任意紧化中不具有可数紧度等结果.文章进一步刻画了相对可数紧度空间的性质。To obtain the function and imbedding properties about relative countable tightness spaces, in this paper the question whether the relative countable tightness space can be adversely preserved by a closed map is studied by means of function and imbedding theories. The question when a locally compact countable tightness space can be embedded into a compact space is also studied. A sufficient condition that the relative countable tightness space can be adversely preserved by a closed map is given; several results that locally compact countable tightness spaces can be embedded into compact spaces are given; some locally compact spaces,which cafft be relative countable tightness spaces in any compact spaces, are also given.This paper explains the relative countable tightness spaces further.

关 键 词:相对可数紧度 紧化 局部紧 闭映射 

分 类 号:O189.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象