检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东农业大学信息与计算科学系,山东泰安271018 [2]泰山学院数学与系统科学系,山东泰安271021
出 处:《青岛大学学报(自然科学版)》2006年第3期18-19,23,共3页Journal of Qingdao University(Natural Science Edition)
摘 要:为了得到相对可数紧度空间的映射及嵌入性质,借助映射方法和紧化理论讨论了相对可数紧度空间被闭映射逆保持问题及嵌入紧空间问题,得到了相对可数紧度空间被闭映射逆保持的一个充分条件、局部紧的可数紧度空间可嵌入紧空间的几个充分条件以及某一类局部紧空间在任意紧化中不具有可数紧度等结果.文章进一步刻画了相对可数紧度空间的性质。To obtain the function and imbedding properties about relative countable tightness spaces, in this paper the question whether the relative countable tightness space can be adversely preserved by a closed map is studied by means of function and imbedding theories. The question when a locally compact countable tightness space can be embedded into a compact space is also studied. A sufficient condition that the relative countable tightness space can be adversely preserved by a closed map is given; several results that locally compact countable tightness spaces can be embedded into compact spaces are given; some locally compact spaces,which cafft be relative countable tightness spaces in any compact spaces, are also given.This paper explains the relative countable tightness spaces further.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15