检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中师范大学统计系,武汉430079 [2]北京大学数学科学学院,北京100871 [3]对外经济贸易大学信息学院,北京100029
出 处:《北京大学学报(自然科学版)》2006年第5期584-589,共6页Acta Scientiarum Naturalium Universitatis Pekinensis
基 金:国家自然科学基金(10571070);许国志博士后工作奖励基金资助项目
摘 要:Bayes网络常用于多变量间的因果推断,但当存在未观测的隐变量和选择变量时,这种图模型往往无法正确描述观测变量间的因果关系。作者利用在观测变量上构造的最大祖先图模型刻画观测变量间的独立性关系和因果结构,并提出了具体的实现算法,从而可由观测数据来推断这类不完全观测下的部分因果关系。In the presence of unobserved hidden variables and selection bias, Bayesian networks may not correctly represent causal relationships among the observed variables. Using maximal ancestral graph models, this paper characterizes the independencies and causal structure of the observed variables and provides an algorithm for causal inference using observational data.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28