检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广州华南理工大学电子与信息学院,510640
出 处:《微计算机信息》2006年第10X期266-268,共3页Control & Automation
基 金:广东省自然科学基金资助(编号:05006593)
摘 要:目前有许多处理正面视觉人脸的识别方法,当有充分数量的有代表性的样本时,能取得较好的识别效果。然而当处理单样本识别问题时,现有的许多方法识别率将明显下降或甚至不适用。本文提出一种新的基于奇异值分解的训练图像增强的单样本人脸识别方法。为了从单训练样本中获取更多的信息,训练样本与其受扰动的少数较大的奇异值的重构图组合成新样本。然后进行Fourier变换,将Fourier频谱作为人脸识别特征,ORL人脸库上的实验结果表明了该方法的有效性。At present there are many methods that could deal well with frontal view face recognition when there is sufficient number of representative training samples. However, few of them can work well when only one training sample per class is available. This paper proposes a new training sample enhancement method based on singular value decomposition to improve the performance of face recognition with a single training sample. In order to enhance the classification information of the single training sample, each training sample is combined with its reconstructed image gotten by perturbing a few significant singular values into a new version of the original sample. By using Fourier transform, the Fourier spectrum is used as feature for recognition. Experimental resuhs on ORL show the effectiveness of the method.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145