检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆大学电气工程学院高电压与电工新技术教育部重点实验室,重庆400030
出 处:《重庆大学学报(自然科学版)》2006年第10期20-23,37,共5页Journal of Chongqing University
基 金:教育部重点实验室资助项目(718411003)
摘 要:介绍了用于心电数据压缩而构造的一种小波神经网络以及它的小波元选择的方法.提出了根据对心电数据做频谱估计,确定其时频域支撑,再根据小波的时频特性确定小波函数的时频域支撑,来初步选定小波元,然后再利用OLS算法对初选的小波元进行筛选.选用Morlet小波为母小波,并用一段心电信号来对该方法进行验证.验证结果表明落在心电数据频谱范围内的Morlet小波有152个,再通过OLS算法筛选后小波元数大大减少了,使得小波网络的尺寸趋于最优.在网络训练时,训练时间也明显地减少.The paper discusses a wavelet network for the ECG data compression and proposes the method for choosing its wavelet neuron. According to the spectrum range of the ECG data, we decide the time-frequency field of ECG. And the time-frequency field of wavelet is also determined by the spectrum range of it. The wavelet neuron is fixed preliminarily by the first two steps. Then the preliminary wavelet neuron is screened by using OLS algorithm. We choose Morlet as the mother wavelet, and use the ECG signal to validate by the method. The result demonstrates that the number of Morlet whose spectrums locate at the ECG's is up to 152. But after screening by the OLS algorithm, it reduces sharply. This method can make the size of the wavelet network driving to optimum and also reduce the training time of the wavelet network sharply.
分 类 号:TM935.2[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229