检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐德权[1]
机构地区:[1]云南师范大学计算机科学与信息技术学院,云南昆明650092
出 处:《湖南文理学院学报(自然科学版)》2006年第3期72-74,79,共4页Journal of Hunan University of Arts and Science(Science and Technology)
基 金:云南省教育厅自然科学基金(5J0621D)
摘 要:关联知识挖掘算法中一种广为人知的算法就是Aprior算法,之后所有关联规则挖掘算法的基本思想都是基于频繁项目集发现算法的基础上进行了改进.为了提高关联规则挖掘效率,首先回顾了基于图的关联规则挖掘算法;然后,在此基础上进行了改进,把关联规则挖掘中寻找频繁项集的问题转换为图中寻找完全子图的问题,通过在图中查找完全子图来寻找频繁项集.提出了一种基于图的关联规则挖掘改进算法,并且对原算法和改进的算法从时间和空间的性能进行了比较分析,得出改进的算法是有效可行的.最后从实验结果得出结论GenerateItemsets算法比DGBFIG算法优.Aprior algorithm is association rules mining algorithm which all known by the people. The outline of all Association Rules mining algorithm based on in the frequent item sets discovery algorithm in advanced. In order to enhance the association rules mining effficiency,in this paper, firstly, the graph-based discovering algorithm with association rules is discussed. Then, the author modifies this algorithm, transform the problem of find frequent item sets to discovering the clique graphs in the graph ,by searching the clique graphs in the association graph to find frequent itemsets. In this paper, author proposes an improved algorithm for the graph-based discovering association rules,and we compare the improved algorithm with the former algorithm from the complexity of times and spatial. Conclude in this algorithm efficiency. Finally, we see the GenerateItemsets algorithm prior to DGBFIG algorithm from experimental results.
关 键 词:关联规则挖掘 APRIOR算法 完全子图 频繁项集
分 类 号:TP311.12[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15