检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学计算机学院
出 处:《西北工业大学学报》2006年第5期604-608,共5页Journal of Northwestern Polytechnical University
基 金:国家自然科学基金(60273087);北京市自然科学基金(4032009)资助
摘 要:定义了决策表在优势关系下的相容约简和下近似约简,优势关系下的相容约简是优势关系下一致决策表约简的推广。证明了优势关系下的下近似协调集是优势关系下的相容协调集。举例说明了优势关系下的相容协调集不是优势关系下的下近似协调集,给出了优势关系下的相容约简和下近似约简的判定定理和可辨识矩阵,由此可以给出它们的约简算法。Aim. Much valuable but hidden information can be discovered from decision tables associated with compatible reduction and lower approximation reduction based on dominance relation. We now present judgment theorems and discernibility matrices, the results of our exploration, that can help make such discovery. In the full paper, we give very detailed mathematical description of our exploration. In this abstract, it appears only necessary to point out the important results for judgment theorems and discernibility matrices: 1) Theorems 2 and 3 in the full paper are two judgment theorems; 2) eqs. (2) and (3) are respectively the compatible reduction discernibility matrix and the lower approximation reduction discernibility matrix. Finally we give an example that illustrates how to obtain specific discernibility matrices from a specific decision table. For this example, the specific decision table is given in Table 2 of the full paper and the specific compatible reduction discernibility matrix and lower approximation reduction discernibility matrix are respectively given in Tables 3 and 4.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.5.46