检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《吉林大学学报(工学版)》2006年第6期983-988,共6页Journal of Jilin University:Engineering and Technology Edition
基 金:韩国通信电子研究院合作基金资助项目(12003121192202)
摘 要:提出了一种基于小波系数局部统计模型的图像去噪方法。该方法利用小波子带的方向性特点以及小波系数尺度内的相关性,将小波系数的概率分布建模为一种自适应高斯混合模型,在贝叶斯框架中采用这种概率模型可以得到一种具有空间自适应性的贝叶斯萎缩函数。利用这种萎缩函数可以实现对小波系数的修正。实验结果表明,利用该方法进行图像去噪能够取得良好的效果,同时可以有效地保留图像的细节。An image denoising method was proposed based on a local statistical model of wavelet coefficients This method modeled the distribution of wavelet coefficients as an adaptive Gaussian mixture model. This model took into account intrascale dependencies between wavelet coefficients and it was adaptive to the wavelet subbands corresponding to three orientations in the image. Based on this model in a Bayesian framework, a spatially adaptive Bayesian shrinkage function was obtained and each modified coefficient was decided separately. Experimental results demonstrate this method improves the denoising performance and preserves the details of the image.
关 键 词:信息处理技术 图像去噪 小波变换 自适应高斯混合模型
分 类 号:TN919.73[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3