检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《中文信息学报》2006年第6期83-88,共6页Journal of Chinese Information Processing
基 金:国家自然科学基金资助项目(NSFC)(60572083);信息产业部信息安全计划项目资助
摘 要:为了优化汉语连续语音中HMM模型系统以提高识别性能,提出了分别为每个声母和韵母半音节声学模型选择最优的状态数的方法。通过综合考虑每个声母和韵母半音节声学模型在不同状态数下的段长均值、方差以及各自识别率这三者信息,作为进行最优模型状态数的选择准则。优化后的声学模型系统由状态数各不相同的声母半音节声学模型组成,同未优化前状态数统一的模型系统相比,音节识别性能提高了5.07个百分点。研究表明,每个声母和韵母半音节志学模型应根据情况选择不同的状态数,优化后的模型系统识别性能得到了提高。In order to optimize the penformance of HMM-based Mandarin Continuous Speech recognition, the method of optimal selecting for each initial and final semi-syllable acoustic Hidden Markov Model state-number is proposed. It is proposed that to synthetically calculate three kinds of information, which are the duration mean, duration variance and correctness of each initial and final semi-syllable acoustic Hidden Markov Model, as the principle to select the optimal each semi-syllable acoustic Hidden Markov Model with different state-number and it shows the better performance of semi-syllable recognition by 5.07%, compared with the Hidden Markov Model system with the same statenumber. The research demonstrated that each initial and final semi-syllable acoustic Hidden Markov Model should be set up according to practicality and the recognition performance can be increased after the optimal selecting.
关 键 词:计算机应用 中文信息处理 声学模型 隐型Markov模型 语音识别
分 类 号:TN912.34[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145