检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《清华大学学报(自然科学版)》2006年第10期1735-1738,共4页Journal of Tsinghua University(Science and Technology)
基 金:国家"八六三"高技术项目(2001AA114071)
摘 要:为了在大词汇量连续语音识别(LVCSR)系统中能够利用段长信息,该文按树状组织发音词典,利用语言模型预测技术,基于最大似然状态序列(M LSS)算法,给出了采用基于段长分布的隐含M arkov模型(DDBHMM)的LVCSR系统的二元文法语言模型的单步搜索算法。实验结果表明,尽管单步搜索的替代错误率高于双步搜索,但单步搜索的插入和删除错误率都比双步搜索要低,总体性能上单步搜索要好于双步搜索。同时,DDBHMM能较准确地利用了语音信号中的状态段长信息,采用DDBHMM的LVCSR系统比采用经典的齐次HMM的系统有更好的识别性能。In order to use duration information in a large vocabulary continuous speech recognition (LVCSR) system, the pronunciation dictionary is organized as a tree and the language model look-ahead technique is adopted. Based on the maximum likelihood states sequence algorithm, the one-stage search algorithm for the LVCSR using the duration distribution-based hidden Markov model (DDBHMM) in proposed when the Bigram language model is used. Tests show that, although the two-stage search algorithm has a lower substitute error rate than the single stage one, the insertion errors and deletion errors are both higher than that of the single-stage search. The one-stage search algorithm is, therefore, better than the two-stage search in terms of overall performance. Since the DDBHMM accurately describes the state duration of the speech signals, the DDBHMM system has better performance than system using homogeneous HMM.
关 键 词:大词汇量连续语音识别 单步搜索 段长分布 最大似然状态序列
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249