检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卢厚清[1] 张永利[1] 余勤[1] 李宏伟[1]
机构地区:[1]解放军理工大学工程兵工程学院,江苏南京210007
出 处:《解放军理工大学学报(自然科学版)》2006年第5期437-441,共5页Journal of PLA University of Science and Technology(Natural Science Edition)
摘 要:为了弥补神经网络用于灰色理论中学习效率低、收敛速度慢、易陷入局部最优等缺点,采用了改进遗传算法IGA(im proved genetic algon ithm)来辅助优化神经网络,实现了对网络连接权的自适应进化,并应用于灰色预测中。提出了进化神经网络灰色预测模型,通过M atlab程序对某地区农村人均收入的数据进行了预测、比较,预测结果误差均在0.3%以下,明显优于传统的GM(1,1)(grey m odel)的预测结果,其误差在10%左右。实例验证,将进化神经网络应用于灰色预测模型中是可行和有效的。Grey model based on the ANN (artifical neural network) is better than traditional GM (1,1) (grey model), which has been verified. However, the low learning efficiency, slow procedure and local minimum which the procedure is trapped in are the defects of ANN. The network's optimization was aided by improved GA, network's connection weights were self-adaptively evolved and the network was applied in grey forecast model. A hybrid forecast model was proposed. This grey forecast model based on evolving neural network, combines GA and ANN and GM(1,1) together. The simulation program based on Matlab shows that this hybrid algorithm is obviously feasible and effective.
关 键 词:改进遗传算法 神经网络 灰色理论 预测模型 实数编码
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.157