检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:詹华税[1]
出 处:《厦门大学学报(自然科学版)》2006年第6期756-758,共3页Journal of Xiamen University:Natural Science
基 金:国家自然科学基金(10571144);福建省教育厅基金(JA05296);集美大学预研基金资助
摘 要:将三维欧式空间旋转抛物面顶点的定义推广到一般的非负曲率完备非紧黎曼流形上,利用Perelman G证明Chee-ger-Gromoll核心猜想的几何方法,讨论了具非负曲率的完备非紧黎曼流形M上的核心S的结构,证明了如果由核心出发的法测地线均为射线,则或者S退化为一点,或者M=Rk×N,其中N是紧致的具非负曲率的黎曼流形.特别地,如果核心的维数仅比流形的维数低一维,可以证明其法测地线均为射线,从而有M=Rn-1×S.It is well-known that there is a unique vertex on rotating parabolic surface in three-dimensional Euclidiean space, the paper generalizes the concept of vertex to a complete noncompact Riemannian manifold with nonnegative curvature. By the geometric method used by Perelmann G in his well-known paper in which Cheeger-Gromoll conjecture was solved, the paper discusses the structure of the soul in a complete noncompaet Riemannian manifold M with nonnegative curvature, proves that if the normal geodes- ics from soul are rays in M, then either M is diffeomorphic to R* or M= R^k×N. Where N is a compact manifold with nonnegative curvature. In particular, if dimS= dimN-1,the paper proves that every normal geodesic from S is a ray in M, thus M=R^n-1 × S.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.4.144