检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院声学研究所语音交互技术实验室,北京100080
出 处:《电子与信息学报》2006年第11期2045-2049,共5页Journal of Electronics & Information Technology
摘 要:该文研究由不同声学基元训练的声学模型的复合。在汉语连续语音识别中,流行的基元包括上下文相关的声韵母基元和音素基元。实验发现,有些汉语音节在声韵母模型下有更高的识别率,有些音节在音素模型下有更高的识别率。该文提出一种复合这两种声学模型的方法,一方面在识别过程中同时使用两种模型,另一方面在识别过程中避开造成低识别率的模型。实验表明,采用本文的方法后,音节错误率比音素模型和声韵母模型分别下降了9.60%和6.10%。Combination of acoustic models trained from different unit sets is studied in this paper. For Chinese continuous speech recognition, Prevailing unit sets include context-dependent initial-final unit set and context-dependent phone unit set. Through experiments it is discovered that some Chinese syllables have higher recognition rates under initial-final model while some have higher recognition rates under phone model. In this paper, a method is proposed to combine these two acoustic models, On one hand the two acoustic models can be fully utilized during the recognition process; on the other hand, some models that lead to low recognition rate will not be used. Experiments show that in comparison with initial-final model and phone model, syllable error rate is reduced by 9.60% and 6.10% respectively after using the provided method.
分 类 号:TN912.34[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.226