检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东南大学数学系,南京210096 [2]香港浸会大学数学系
出 处:《南京大学学报(数学半年刊)》2006年第2期232-241,共10页Journal of Nanjing University(Mathematical Biquarterly)
基 金:Supported by NSFC under grant 10671033 and Southeast University Science Foundation XJ0607230.
摘 要:Mycielski图是1955年由Mycielski提出来的.任给一个图G和一个非负整数m,G的推广Mycielski图μm(G)是G的Mycielski图的一个自然的推广.推广Mycielski图的性质以及它们的点色数、圆色数和分数色数等已有许多研究.本文研究圈的推广Mycielski图的圆色数.定义Cn为n个顶点的圈.对任意非负整数m和大于2的整数n,本文确定了图μm(Cn)的圆色数,同时还得到了图μm(Cn)-v的圆色数的一些结果.Generalized Mycielski's graphs (also known as cones over graphs) are the natural generalization of Mycielski's graphs (which were first introduced by Mycielski [16]in 1955). Given a graph G and any integer m ≥ 0, one can transform G into a new graph μm(G), the generalized Mycielskian of G. Many basic properties of μm(G) were established in [14,19]. And the circular chromatic numbers of the generalized Mycielskians of complete graphs were completely determined in [12]. Here we determine the circular chromatic numbers of μm(Cn) for any m 〉 0 and n ≥ 3, where Cn is the cycle of length n. We also investigate the circular chromatic numbers of μm(Cn) -v for each vertex v of μm(G). For m ≥ 1 and odd n(〉 5), the graphs μm(Cn) turn out to be 4-critical, triangle-free graphs with Xc = χ = 4. Furthermore the odd girth of graphs μm(Cn) can be arbitrarily large.
关 键 词:圆色数 推广Mycielski图 圈 奇围长 临界图
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28