检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:范影乐[1] 武传艳[1] 李轶[1,2] 庞全[1]
机构地区:[1]杭州电子科技大学生物医学工程与仪器研究所 [2]浙江大学生物医学工程与仪器学院
出 处:《航天医学与医学工程》2006年第6期452-455,共4页Space Medicine & Medical Engineering
基 金:国家自然科学基金资助项目(60302027);浙江省教育厅科研计划项目(20030620)
摘 要:目的研究基于涨落复杂性测度的语音特征提取,提高低信噪比语音端点检测的正确率和鲁棒性,从而改善语音处理和分析的性能。方法分析状态空间分割方法、窗长以及分区数对检测性能的影响。采用基于信息增益的复杂性行为度量,对含不同噪声类型,以及不同信噪比的各种中英文语音样本进行了对比实验。结果在低信噪比情况下,涨落复杂性测度比广泛应用的谱熵方法更有效。结论涨落复杂性测度技术可以较好地实现在动态噪声环境下对语音端点的检测。该方法鲁棒性好,算法实时性高。Objective To find a useful index for real-time detecting of speech endpoint and improving the performance of speech processing under low SNR by analyzing fluctuation complexity of speech signals. Method The influence of state space partition method, window size and partition numbers on detecting performance was analyzed. The comparison experiments of speech signals corre- sponding to different SNR and noise type was designed using the measure of complexity behaviors based on the information gain. Result It was found that fluctuation complexity was more effective in detecting Iow-SNR speech than spectral entropy. Conclusion Fluctuation complexity is a valid feature to make speech/non-speech decision for the low SNR cases. The presented method can achieve robust performance and has a good real-time behavior.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28