检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学机械系统与振动国家重点实验室,上海200240 [2]悉尼大学宇航机械与机电工程学院
出 处:《振动工程学报》2006年第4期488-493,共6页Journal of Vibration Engineering
基 金:国家自然科学基金资助项目(50390063);国防科技重点实验室基金资助项目(51463040403JW0301)
摘 要:基于一次近似理论,采用弧坐标分量和Cartesian坐标分量共同描述柔性梁的变形场,并采用Green应变张量描述应变能,用Hamilton原理建立系统动力学方程,揭示产生动力刚化现象的力学本质。采用有限元方法进行离散,基于数值实验系统地研究旋转柔性梁的动力刚化现象。计算表明,旋转柔性梁的横向固有频率随旋转角速度和中心刚体半径的增大而增大,从而只存在一阶临界转速,且当中心刚体半径超过临界半径时,不存在临界转速。Based on the first-order approximation method (FAM), a non-Cartesian variables and a Cartesian variable s and a Cartesian u2, which denote the arc-length stretch and the transverse displacement respectively, are employed to describe the deformation of the beam. The equation of the strain energy is then derived by adopting Green strain theory. The governing partial differential equations deduced from Hamilton's principle are discretized via two-node beam elements. Then, the dynamic stiffening effects are investigated for the variations of rotating speed and hub radius. It is shown that the bending natural frequencies increase as the angular speed increases, and the increasing rates become larger as the hub radius become larger. It is demonstrated that there exists only the first order critical rotating speed and a critical hub radius, above which no first order critical rotating speed exists.
分 类 号:O313[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.151