检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津大学电气与自动化工程学院,天津300072 [2]大庆油田有限责任公司测试技术服务分公司,黑龙江大庆163412
出 处:《化工学报》2006年第12期2847-2853,共7页CIESC Journal
基 金:中国石油天然气集团公司重点科技攻关项目(960010-01-04);国家自然科学基金项目(60374041)~~
摘 要:基于伞集流涡轮流量计与放射性持水率-密度计组合仪在油气水三相流流动环中的动态测量特性,建立了三相流总流量及分相含率的人工神经网络软测量模型.由于集流伞存在流体非线性漏失,集流后测量通道内流型复杂多变,在软测量模型中考虑了油水流型特性的影响.人工神经网络训练与学习采用了Levenbery-Mar-quardt非线性阻尼最小二乘算法,模型检验结果表明:对泡状流及段塞流流型,利用该模型可以实现较高精度的总流量及分相含率预测,为伞集流油气水三相流测井信息处理提供了一种有效方法.Based on dynamic measurement characteristics of turbine flowmeter and radioactive water holdup-densitometer combination tool with basket concentrating flow diverter in oil-gas-water three-phase flow loop, a soft measurement model of artificial neural network (ANN) was established to predict the total flow rate and component flow rate fraction of three-phase flow. The effect of oil-water flow pattern characteristics on the soft measurement model was accounted for by considering the nonlinear leakage of basket concentrating flow diverter and various complex flow pattern variations of the measuring channel after the concentrating flow. Levenbery-Marquardt nonlinear damp least square algorithm was used to train and learn in the model. The model verification results showed that the model could be used to give good prediction accuracy of total flow rate and component flow rate fraction for the bubble and slug flow patterns. It provides an effective information processing method for three-phase flow logging.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38