检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]郑州轻工业学院信息与计算科学系,河南郑州450002
出 处:《郑州轻工业学院学报(自然科学版)》2006年第4期95-99,共5页Journal of Zhengzhou University of Light Industry:Natural Science
基 金:郑州轻工业学院青年科研启动基金(572);郑州轻工业学院校内基金项目(XJJ013)
摘 要:建立了一类双时滞两种群捕食与被捕食传染病模型,得到了无病平衡点稳定与否的阀值条件.当时滞经过某一临界值时,Hopf分支在有病的边界平衡点发生,并利用Rouche定理得到了有病平衡点关于两时滞的稳定区间.A model for nonlinear population-epidemic dynamics with two delays is established. The critical condition for the stability of the non-epidemic equilibrium is obtained. When the delay passes some critical value, Hopf bifurcation takes place at the epidemic boundary equilibrium. We also get the stable regions on the two delays using Rouche's theorem.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44