若干联图的点可区别均匀边色数  被引量:15

On the Vertex-Distinguishing-Equitable Edge Chromatic Number of Some Join-Graphs

在线阅读下载全文

作  者:张忠辅[1] 李敬文[2] 赵传成[3] 任志国[3] 王建方[4] 

机构地区:[1]西北师范大学数学与信息科学学院 [2]兰州交通大学信息与电气工程学院,兰州730070 [3]兰州师范高等专科学校计算机系,兰州30070 [4]中科院数学与系统科学研究院应用数学研究所,北京100080

出  处:《数学学报(中文版)》2007年第1期197-204,共8页Acta Mathematica Sinica:Chinese Series

基  金:国家自然科学基金资助项目(40301037)

摘  要:k-正常边染色法f,若满足任两个不同点的关联边色集不同,则称f为G的k-点可区别边染色,简记为k-VDEC of G,并称最小的k为G的点可区别边色数;对k-VDEC若再满足任意两色的边数之差不超过1,则称f为G的点可区别均匀边染色,简记为k-VDEEC of G,并称最小的k为G的点可区别均匀边色数.本文得到了图等阶的路和路,路和圈,圈和圈的联图的点可区别均匀边色数.A k-proper edge coloring of a simple graph G is called vertex-distinguishing edge coloring of G if for any two distinct vertices u and v in G, the set of colors assigned to the edges incident to u differs from the set of colors assigned to the edges incident to v, is abbreviated k-VDEC, the minimal number k of colors required for vertexdistinguishing edge coloring of G is called the vertex-distinguishing edge chromatic number of G, is denoted by χ′vd(G). For a k-VDEC of G, it satisfied with the difference for any two sets of colors included the edges not more than 1 also, it is called k-vertex- distinguishing-equitable edge coloring of G, abbreviated to k-VDEEC. And the minimal number k is called the vertex-distinguishing-equitable edge chromatic number of G, denoted by χ′vde(G). In this paper, we obtain the vertex-distinguishing-equitable edge chromatic numbers of join-graphs of path and path, path and cycle, cycle and cycle with equivalent order.

关 键 词:  联图 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象