一种基于粗集理论的增量式学习改进算法  被引量:1

Improved algorithm for incremental learning based on rough sets theory

在线阅读下载全文

作  者:韩业红[1] 戴凌霄[1] 

机构地区:[1]山东师范大学管理学院,济南250014

出  处:《计算机工程与应用》2007年第1期185-188,共4页Computer Engineering and Applications

基  金:国家自然科学基金青年基金资助项目(10201029)。

摘  要:增量式学习中,当向决策表中增加一个新例子时,为了获得极小决策规则集,一般方法是对决策表中的所有数据重新计算。但这种方法显然效率很低,而且也是不必要的。论文从粗集理论出发,提出了一种最小重新计算的标准,并在此基础上,给出了一个增量式学习的改进算法。该算法在一定程度上优于传统的增量式学习算法。In order to compute the minimum set of roles of decision table when a new instance is given into a Knowledge Representation System for incremental learning,all the data in the decision table will be recalculated in the classical method. Clearly,this method is not effective.In this paper,a criteria for the minimal recalculation based on the rough sets theory is given, and an improved algorithm for incremental learning is present.The improved algorithm in this paper is better than the classical method in some sense.

关 键 词:粗集 增量式学习 动态学习 机器学习 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象