检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽工业大学计算机学院,安徽马鞍山243002
出 处:《计算机技术与发展》2007年第1期43-45,共3页Computer Technology and Development
基 金:安徽省教育厅自然科学基金重点资助项目(2004KJ053ZD)
摘 要:决策树是归纳学习和数据挖掘的重要方法,通常用来形成分类器和预测模型。概述了决策树分类算法,指出了决策树算法的核心技术:测试属性的选择和树枝修剪技术。通过对当前数据挖掘中具有代表性的优秀分类算法进行分析和比较,总结出了各种算法的特性,为使用者选择算法或研究者改进算法提供了依据。最后,通过一个实例说明决策树分类在实际生产中的应用。Decision tree is an important method in induction learning as well as in data mining, which can be used to form classification and predictive model. Introduces decision tree and points out its key techniques: the choice of testing feature and tree pruning. It summarizes the main features of every algorithm by analyzing and comparing a variety of typical classifiers to provide a basis for selecting or improving the algorithms in data mining. Finally, through an instance, this paper shows the application of decision tree in production,
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3