检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南大学哲学系,湖南长沙410083 [2]湖南科技大学期刊社,湖南湘潭411201
出 处:《湖南科技大学学报(社会科学版)》2007年第1期53-58,共6页Journal of Hunan University of Science and Technology(Social Science Edition)
基 金:湖南省哲学社会科学基金资助项目(06YB62)
摘 要:塔斯基将真理概念定义为:在对象语言O中一闭语句是真的,当且仅当,它被所有的对象序列所满足。该定义的含义是,如果将该闭语句分解成开语句后,其中的自由变元能被某些对象序列所满足,则再将开语句合成为闭语句,其闭语句就被所有序列所满足,于是可断定该语句是真的。塔斯基的语义性真理定义既保留了亚里士多德古老真理定义的直观含义,又避免了在语义封闭的语言中导致悖论。其定义既成为经典逻辑的语义学基础,广泛应用与能用一阶语言所表达的科学领域中的句子集中,同时定义本身也是运用一阶逻辑对概念进行分析的典范。Truth is defined by Tarski that a shut sentence is true in an object language only if it is satisfied by all object languages. The definition means that if the shut language is resolved to be an open language, the free variables of which are satisfied by some object sequences, and the open language is composed to be a shut language, which is satisfied by all sequences, then it is affirmed that the sentence is true. The definition of Tarski's semantics truth not only reserves the intuitive meaning of Aristotelian ancient truth, but avoids the paradox in semantically close language. It becomes the semantic base of classical logic and the extensive application and practice of sentence centralizaion expressed by the first order language in scientific area; at the same time, the definition itself is a mirror of analyzing conception by applying the first order logic.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28