检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]长沙理工大学桥梁与结构工程学院,湖南长沙410076
出 处:《工程力学》2006年第12期154-158,99,共6页Engineering Mechanics
基 金:湖南省自然科学基金(05JJ40086);湖南省教育厅基金(05C253)
摘 要:将简支梁桥简化为欧拉-伯努利梁模型,考虑四自由度车辆移动系统与结构表面接触处不平顺产生的随机激励,建立了多个移动车辆振动系统与梁的耦合动力效应模型。在数值算例中,计算了不同模态截断阶数情况下由动力效应产生的挠曲线;讨论了移动速度变化时,在梁上作用不同荷载组合情况下冲击系数的变化规律;并讨论了跨径变化时冲击系数的变化规律;最后比较了在不同等级平整度情况下梁的动弯矩、动剪力的结果。The dynamic behavior of bridge structures under moving vehicular loads is studied. The vehicle is modeled as a four-DOF system with linear suspensions and tire flexibility, and the bridge is modeled as a continuous Euler-Bernoulli beam simply supported at both ends. A mathematical model is adopted to describe the roughness of the contact surface between the vehicles and the bridge. The partial differential equation governing coupled vibration of moving vehicles and beam structure is derived. The equation is solved in the time domain by modal analysis and Newmark method. In the numerical examples, the impact coefficient of the bridge is obtained. The shear force and bending moment of the beam are calculated. The dynamic responses of the bridge are simulated with different loads, vehicle speeds, bridge surface roughness, and the span of the beam.
分 类 号:TU311.3[建筑科学—结构工程] U441.2[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198